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ABSTRACT 

The Maximum Likelihood Method and the Maximum Entropy Method of spectral 

estimation are described and interpreted in terms of the innovation filter concept. 

Algorithms are developed for mapping an observed data sequence into the spectral 

estimates.    The resolution performance of these spectral estimation algorithms is 

compared by applying each to simulated data containing two tones in white noise. 
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I. INTRODUCTION 

A. Problem Statement 

We suppose that one observes a segment, r(t) 0 <t £T, of a sample 

function from a zero-mean stationary random process and wishes to generate an 

estimate of the power density spectrum.   When it is desired to distinguish between 

sharply peaked components of the spectrum at some minimal separation, A., then the 

choice of a spectral estimate is largely dependent on the time-bandwidth product, 

W =   TAf.   If W> > 1 then any one of a large number of schemes will achieve the de- 

sired resolution with a reasonably small estimate variance.   In many situations, how- 

ever, the observation interval is constrained to be relatively short (e. g. when r(t) may 

only be considered stationary over a short time interval) and one must select an 

estimate subject to the requirement, W ~ 1. 

B. The Conventional Method 

(11) When the conventional method (Blackman-Tukey 1959)        is employed, 

the observed data is used to obtain the covariance estimate 

T 
K (T) = (T - T)"

1
 ^   r(t) r* (t - T) dt .. K (-T) (1.1) 

0£ T <J T    £ T 
m 

Where Tm is the maximum lag used.   The spectral estimate is the Fourier transform 

of the product, K(T) d (T), where d (T) is a given symetric "lag window" which 

vanishes for   | T I    > Tr m. 



Since K (T) is an unbiased estimate of the covariance,  E [r (t) r (t-T) ] , 

the average estimated spectrum is the convolution of the true spectrum with the 

spectral window, 

ao 

D(f) =    \    d(T)e"j2TTfTdT 

Therefore, our high resolution (small bias) requirement translates into a narrow 

band constraint on the spectral window. 

Unfortunately, the estimate variance is approximately inversely 

proportional to the spectral window bandwidth.   In addition, narrow band windows 

generally have significant sidelobes which may produce spurious peaks in the estimate. 

We are thus left with the likelihood that there is no spectral window which provides 

satisfactory performance for the situation of interest. 

C. The Data Adaptive Methods 

Recently, two spectral estimation methods have appeared in the 

literature which give us a promising alternative approach to this problem.    These 

are the "data adaptive" methods - the M. L. M. (Maximum Likelihood Method)   and 

the M.E.M. (Maximum Entropy Method).      Similar to the conventional method, each 

of the data adaptive methods consists of a procedure for obtaining the spectral 

estimate from an estimate of the covariance, K (T), |T|  <; Tm  .      The new methoc 

however, relinquish the linearity and simplicity of description associated with the 

*The M.  L.  M. was developed for application to frequency-wavenumber spectral 
analysis by Capon,  [ Reference 6], and applied to time series analysis by Lacoss, 
[ Reference 2]. 
t The M.   E.  M. and its application to time series analysis first appeared in a paper 
by Burg,  [ Reference 7]. 
| We distinguish here between K (T), which is any estimate of the covariance, and the 
particular estimate,  K (T). 



conventional method in an attempt to provide improved estimate performance when 

high resolution is required. 

For convenience, we give a short description of the methods here.   A 

more complete description is contained in Chapter II. 

The M. L. M. spectral estimate at the frequency f Hz   is obtained as 

the average output power of a particular causal  convolutional filter of duration T 

seconds when the input is a random process with covariance K (T) for I Tl s  Tm . 

The filter is designed to pass the power in a narrow band about f Hz and minimize 

the power due to other (interfering) spectral components.   The average output power 

of the filter is given by 

*v-[f J».-I«Q(^J**H" 

where we have assumed the existance of the inverse kernel, Q (t, u), of K (T) 

defined by the integral equation 

T Am 
V      Q(t, u) K(u - x) du = 6 (t - x)     ;     0 < t, x < T 

To describe the M.  E. M., we assume that the measured covariance is 

of the form 

K(T) = N   6(x)+ 0(T) = K*(-T);   |T| <: Tm 



and consider the  causal convolutional filter of duration T    seconds which is obtained m 
as the solution to the integral equation 

T 
N   h(T: T   ) + Cm h(u: T   ) 0(T - u) du = P(T) 0 <;  T s T (1.3) 

m 

The M. E. M.  spectral estimate is given by the Fourier transform of a certain positive 

definite extension of the measured covariance.   The extension is 

K   (T) = N   6(T) + P   (T) = K   *(-T) ; T    <cc 
Iy O CJ C 

Where   3„ (T) is the solution to the Wiener-Hopf integral equation: 

N   h(T: T   ) +  Cm h(u: T   ) PD(T - u) du - 8D(T) 
m       j m'    E 

0 <;  T <cc   (1.4) 

It can be shown from 1.4 that the filter,  6(T)"h(T;T   ), whitens a process with 

covariance K„ ( T) and the spectral height of the white output is N .    Therefore, the 

M. E. M. spectral estimate is given by 

A    C „    -j2rrfT T rm , .     ^   , 
1 -  \     h(T: T   ) e 

.) m 
-j2rrfT 

dT 
-2 

(1.5) 



The M. E. M. extension of the measured covariance is developed in 

Chapter II by using the concept of an "innovation process".   Other interpretations* 

of the extension appear in References 7 and 9. 

We note that each of the data adaptive methods attempts to improve on 

the conventional method in a different manner.   The M. L. M. employs a "sliding" 

bandpass filter which adjusts itself to the random process under consideration in 

such a way that the spectral estimate at one frequency is, in a sense, least affected 

by spectral components at other frequencies.   The M. E. M. extrapolates the measured 

covariance beyond the largest available lag in a unique way which depends on the 

measured covariance. 

D. Performance Considerations 

At the present time, a complete evaluation of performance for the data 

adaptive methods has not been accomplished.   In order to render this evaluation, 

one must necessarily specify a scheme for obtaining the measured covariance from 

the observed data and compute the bias and variance of the spectral estimate for 

arbitrary spectra (usually by assuming that the observed process is Gaussian). 

The complex nature of the new methods has thus far hindered this computation and 

the current results are restricted to the uninteresting case where W >>1. ' 

A partial characterization of performance may be obtained by applying 

the estimation methods to given covariance functions.   That is, we take the measured 

covariance to be a finite segment of a known covariance function and evaluate the 

estimate performance in terms of the largest lag used and the covariance parameters. 

The obvious limitation of this approach is that it yields no information about estimate 

variance.   It does, however, provide information which is roughly equivalent to 

* These employ the discrete form of the M. E. M. which is indicated in Chapter II. 
•f These results are discussed by Lacoss in Reference 2. 



that afforded by a bias computation and is therefore useful as a basis for comparing 

the resolution obtainable with the different estimation methods.* 

In Chapter III we employ this approach to obtain a measure of resolution 

for the data adaptive methods.   This is done by taking the known covariance to be 

from a random process which consists of two equal power tones in white noise and 

computing the minimal signal-to-noise ratio necessary to resolve the tones as a 

function of the time-bandwidth product.   The computation provides a useful standard 

of comparison for the data adaptive and conventional methods.   We note, however, 

that this measure of resolution is somewhat simplified in that it does not directly 

relate to the situations where the tones are of unequal power or other (interfering) 

spectral components are present.   We have therefore included for reference a com - 

putation of the spectral estimates for the general case where n tones of unequal 

power are superimposed on white noise. 

E. Implementation of the Data Adaptive Methods 

The digital computation of the data adaptive spectra from the observed 

segment, r (tXO ^t   ^T,  is considered in Chapter IV where we use discrete forms 

of the two methods developed in Chapter II.   We indicate alternative schemes for 

estimating the covariance from the observed data and develop algorithms for 

mapping the observed data into the spectral estimate. 

In Chapter V we employ three such schemes with each of the data 

adaptive methods and apply the six spectral estimates to data acquired by numerically 

simulating two tones in white noise.   The simulations enable us to provide a quali- 

tative comparison of the estimate performances. 

"Some comparisons of this type have been made by Lacoss [ Reference 2] 



II.       THE DATA ADAPTIVE METHODS 

We present here both the continuous and discrete forms of the data 

adaptive methods.   For either method, the continuous form consists of a mapping 

from the measured covariance, K ( T)   |T| £  T   , to the spectral estimate, 
m 

P (f : T   )    I f I  <°°.   To guarantee the existence of the map in each case, we shall 
m 

assume that the measured covariance is a fixed segment of the form 

K (T)  = NQ 6 (T) + p (T)  = K* (- T); | T | «; Tm 

where N„ is positive,   (3(T) is complex - valued and continuous on [- T   , T     ], and 
U mm 

K ( T) ig positive definite.* 

To develop the discrete form of each method, we suppose that the 

measured covariance is available as 2 N +1 samples of a continuous positive 

definite covariance segment on    - T   , T 
L     m      m 

at uniform intervals of lag.    We denote 

the samples by the vector T   =  col ( T (- N), . . . , * (-1),  ^(0),  Y(!) Y(N) 

where Y(i) is the covariance segment evaluated at iA, and NA = T   .   In this 
m 

notation, the discrete form   is a mapping from Y to the spectral estimate, 

P(f :T   ), |f |    <». 

*The positive definite constraint requires that 
T      T 

NQ \m |cp(x) |    dx+ Cm   Cm cp* (u) P(u-v) cp(v) du dv 
J0 J0     J0 T 

be positive for all square-integrable functions cp(x) on  0, T       such that   \     |cp(x)| 

dx>0.   Note that 6 (T) is not necessarily a covariance function since we have not 
required that it be positive. 



The M. L. M. is described in terms of a classical optimal filtering problem. 

The two forms of this method are readily obtained by considering continuous and 

discrete versions of the optimal filter. 

The M. E. M. provides a certain positive definite extension of the measured 

covariance.   We develop the extension via the concept of an "innovation process". 

A.       The M. L. M. 

The M. L. M. spectral estimate at the point f   Hz   , P,  (f :T   ), is obtained 
o L    o    m 

as the solution of a classical optimal filtering problem.   We consider the causal con- 

volutional filter of duration T    seconds, h,   (t), which satisfies the constraint 
m f   v " 

o 

H,   (f ) =[mK   (Oe'J^Vdt = 1 
fo    °       J0      fo 

and minimizes the average output power when the input is a zero-mean random pro- 

cess whose covariance agrees with the measured covariance on interval 

The M. L. M.  spectral estimate is precisely the average output power 

of this filter.    That is, 

2 

-T   ,  T 
L     m      m 

PT    f : T 
L \ o      m )" 

|xo(t)| (2.1) 

Where 

m 
X    (t)   =[       h      (T) X (t - T) d t 

J0      o 
(2.2) 

* Since the average output power is independent of the phase of H    (f ), the 
causal constraint is not essential. o 



If the solution for the optimal filter is employed in 2.1 and 2. 2 to determine 

the spectral estimate in terms of the measured covariance, the result is 

Tm   m   -j2nf   t j2rrf   u -1 (2.3) 
PL(fo:V=[S0S0

e '«•<' °dtdu] 

where  Q (t, u) is the inverse kernel of K (t-u) defined by the relation 

T 
^m 

\Q   Q(x, t)K(t-u)dt = 6(x-u); 0<x, u<Tm (2.4) 

By the assumed form of the measured covariance, the inverse kernel is well defined 

Q(t, u) = (1/NQ) [ 6 (t - u) -H(t, u) ] ; 0 ^ t, u ^ Tm (2. 5) 

where H (t, u) (the Fredholm resolvent of 0 (t - u) on [ 0, T    ] ) is the solution to 

the Fredholm integral equation 

T m 
NH(t, T) + ^      H(t, u) p(u-r)du = p(t-i) ; 0 <: T , t£ T (2.6) 

° ^0 m 

To indicate the discrete form of the M. L. M., we define the (N + l)x(N + l) 

measured covariance matrix 

*N  ]      = Y(j-i) is  i,  J«  N + l (2.7) 
ij 

and the N + 1 dimensional sampled frequency vector 

IT     A        if*       J2TTf A j2iTfN A\ .„ FA   colfl, e .  .  . , e J. (2.8) 



A discrete replica of the preceding optimal filtering argument yields the 
(2) 

analogous result 

r   T      -l      * 
P. (f:T   ) =    FKT * .T   FM L m        L-N        N    -N 

-1   _ * 1 - 
(2.9) 

We note here that the M. L. M. does not provide an extension of the mea- 

sured covariance.   That is, the inverse Fourier transform of the spectral estimate 

does not, in general, agree with the measured covariance on the interval 

|"-T   , T L      m      m 

In the next part, we indicate that the M.L. M. does extend the measured 

covariance and provide an interpretation of the extension in terms of the innovation 

filter. 

B. The M.  E.  M. 

Consider a zero-mean stationary random process x (.) on [ 0, °°] with 

covariance 

E [ x (t) x   (u)   1 = K _  (t - u) = N    6 (t - u) + fl     (t - u) ;     0 <; t, u < » 

It is desired to select B     (T) ,  | T | < » and a causal convolutional filter h (T : T   ) 
E m 

of duration T    seconds so that the following constraints are satisfied: 
m 

1) PE   (T)    -    P(T) |T|  s Tm 

2) The process w(.) on [T    , °°) defined by 

T 
A m 

w(t) = x(t)-\n h(u:  T  )x(t-u)du;      T   <: t <» 
J 0 m m 

10 



is a white process for which 

E   [ w(t) x   (u)   ]    =    0  fort>u 

The second constraint implies that 

T 
m pin 

E [ w (t) x* (t - T) ] = KE (T) -   V     h (u: Tm) KE(T - u)du = 0 
'0 

0  <   T   <   oo 

Consequently,  0    (T) and h (T :   T   ) must satisfy the Wiener-Hopf integral equation 

T 
m 

Nnh(T:TJ + <\      h(u: T   )   p(r-u)du    =    0R(T);    0 <; T < » (2. I0) o m      J _ m c, v        ' 

Since   0    (T),   h (T :   T   ) may be obtained as the solution to the integral equation 
a m 

T 
m 

h(r:   T   ) + [       h(u:   T   )   0(r-u)du    =    0(x) ;    0 *   x s   T (2.11) 
o m        J m m v        ' 

Given h (T :   T   ), it can be shown that 2.10 has a unique positive definite solution, 

K    (T), and 0    (T) is square-integrable. 
E E 

Conversely, it can be shown that the functions 0     (T ) and h (T :   T   ) deter- 
E    ' m 

mined by 2.10 and 2.11 satisfy the above two constraints where the spectral height of 

w (t) is N .    The whitening property of the filter 6 (T) - h (T :   T   ) is easily verified 
o ^ m 

by computing E [ w(t)w      (u) ]  and then employing 2.10. 

* We have obtained these results in a paper which is to be published -   "An Inno- 
vations Approach to Covariance Extensions. " 

11 



The covariance KE (T ) is precisely the M. E. M. extension of the measured 

covariance.   Since the filter 6 (T) - h (T : T   ) whitens the process x (.) in the steady 

state and the spectral height of w (.) is N , the M. E.M. spectral estimate is given by 

T. 
,   *  $ Kp (T) e" J2 nf 

-00 

N/|1-$   h(T:Tm)e-J2TTfT|2 (2.12) 

The existence of the positive definite extension Kg(i) depends only on the as- 

sumption that K(T) is positive definite and is independent of whether P(T) is positive 

definite.   When the positive definiteness of P(T) is assumed, it is of interest to inquire 

whether |3p (T) is positive definite.   It follows from the continuity of the integral term 

in 2.10 that the difference, NQ h (T :   Tm) - P(T), is continuous for TS 0.    When 

A 
lir 

T -» T" 

h(Tm:Tm)=    lim h(T : Tm) ^ 0, 

m 

then 0P(T) is discontinuous at the point T= T   .    Note that 0_, (T) is continuous at the 

origin by assumption; it then follows that PE (T ) is not a valid covariance function 

(see e.g., Papoulis, Reference [12 ] p. 334).    It is easy to demonstrate cases where 

0 (T) is positive definite and h(T   : T   ) ^ 0   (e.g., if 3 (T)=Q> 0,   | T |s T   , 

then h(T   : Tm)  =   a /   [ NQ + a Tm] .    Consequently, we may conclude that this as- 

sumption does not imply that 3p (T) is positive definite. * 

If it is known that the observed process consists of a signal process plus an 
uncorrelated white process, then we have additional information beyond the measured 
covariance.   Therefore, the result does not indicate that the M. E. M. generates an 
"unreasonable" spectral estimate from the measured covariance. 

12 



It is instructive to interpret the M. E. M. extension in terms of the "innovation 

process of x (.)".   This process is obtained by driving the causal linear filter 
t t 

Q(r: t)    =    6 (T) - h (r. t) (the "innovation filter"),      with x (. ). That is, 

A h 
v(t)    =    x(t)-\      h(u : t)  x(t-u) du ;     0^t<» (2.13) 

t^ 

Where h ( T : t) is the solution to the integral equation 

i 

N h(T: t) + C   h (u: t)   3 _ (T - u) du    =    p_ (T) ;     0 ^   T  S  t < » (2.14) 
° JQ & & 

It can be verified that the innovation process v (.) is white with spectral height N . 

To provide a physical interpretation of the innovation process, we employ 
[3] 

a result due to T. Kailath        which indicates that we may write x (.) as the sum of 

a signal process s (.) and a correlated white noise process z (.) where the "future" 

noise is uncorrelated with the "past" signal.    That is, 

x (t)    =    s (t) + z (t)   ; 0  s   t <  co 

wnere   E[ z (t) z   (u) ]     =    N   6(t-u),    E [z (t) s (u) ]    =    0 

for t > u and p    (t - u)    =    E [s (t) s (u)] + E [s (t) w (u)] for t  :>  u. 
E 

With this representation of x (.), the least-squares linear estimate of s(t), 

given the observation x (u)   0 £  u £   t, is precisely 

(t)    =    \      h (u: t)   x (t - u) du   ; 0 <• t < « 
J0 

f~        For notational convenience, we represent the innovation filter by giving its 
response at time t due to an impulse applied at time t - T. 

J The observations of this section concerning the innovation process apply more 
generally to a stationary process y(.) on (0, a) with covariance, C(T)    = 
N     6 ( T) + d (T) , where c (T )is positive definite. 

13 



This indicates that h (T : t) may always be regarded as a causal least-squares filter. 

The innovation process then has the interpretation illustrated in Fig. 2.1. 

Since the covariance of x (.) is the M. E. M.  extension of K (T), the innova- 

tion filter is determined for t  <   T    by the integral equation 

10 

i 

N h(T:t) + C    h(u: t)   p(r-u)du    =    p(-r) ;    0  <:   T  S   T (2.15) 
o J n m 

For t > T   , the innovation filter is given by * 

J2(T: t)    =     «(T: T   )    =    6 (T) - h(T: T   )   ;      T      < t  <   • (2.16) 
m m m v        ' 

That is, the innovation filter determined by the M. E. M. covariance K    (T) is time 
E 

invariant for t > T   .   Consequently, the M. E. M. extension of the measured covari- 

ance has a particularly simple interpretation in terms of the innovation filter.    For 

t s   T   . the innovation filter is determined by the measured covariance.    For 
m 

t  > T   , the extension is chosen so that the innovation filter is given by 2.16. 
m 

This interpretation is readily applied to the discrete form of the M. E. M. . 

To this end we let x (i)    =    0, 1, 2,  ... be a zero-mean stationary random process 

with covariance 
* 

E  [X(1)X     (j)]       =      VE(i"j) 0    £     i,     j<   on 

where     Y   (i)    =    i<i) -N  <;   i  s  N 
E 

* From 2.10 we observe that h (T: T   ) IS a solution to 2.14 for t  > T   .    Since 
,   , „ m m 

the solution is unique, the result follows. 

14 



[TN-75-7 (2.1) | 

t) = s(t) + z(t) 
r 

v(t) 

s(t)     * k       ' 

h (T : t) 

«(T: t) 

E[x(t)x*(u)] 

= N06(t-u)+BE(t-u) 

E [v(t)v*(u) ] 

= NQ 6 (t - u) 

Fig. 2.1 - The Innovation Process. 

15 



Let x (n) denote the least-squares linear estimate of x (n) given the observations, 

x (i), i =    0, 1, . . . , n-1, where x (0)    =    0.   If we interpret x (n) as the output of 

a causal linear filter   - r   (i), t the innovation process of x (.) is given by 

£(n)    =    x(n)-x(n)    = 

x(n)   +Y rn(i)   x(n-i)    =   ^ an(i)x(n-i) (2.17) 

i    =    1 i    =    0 
0, 1, 2, . 

where I 1 i    =    0 

ft   (i)    £ 
n 

T (i) 1  <:   i ^   n n 

is the innovation filter. 

We observe that the innovation process is just the estimate error as it evolves 

in time.    The filter weights at time n are then chosen so as to minimize the quantity, 
A * 

P      =     E [ £ (n)    C (n) ] (the average output power of the innovation filter at time n). 

Recall that this is equivalent to requiring that the error be orthogonal to the observa- 

tions.    That is, we require 

E[£(n)x    (n-j)]    =    Oforj    =    1, 2 n (2.18) 

It follows readily from 2.17 and 2.18 that 

Ecewe* (n>]  = pn6^n 

so that the innovation process is white as in the continuous case.    The variance is, 

however, time-varying. 

The negative sign is chosen by convention. 

16 



Applying 2.18 to 2.17, we obtain n + 1 linear equations for p   and the filter 

weights at time n: 

YE(j)+Porn(j) + 

i = 1 

Pn    =    Po + I    rn  (i)   \     (i) 
i = 1 

In vector notation these equations become 
* 

<s>      n      =   p 
— n       n -^n 

TE     (j_1)   rn(i)    =    ° 

j    =    1. 2, 

v i-. (i " J)»   12   is the innovation filter at time n, b n 

n 
r 
—n 

Unl    •    rn(i>' 

and P      =    col (p , 0,  ---, 0) 
—n n 

(2.19) 

Where  <J«    is the ( n + 1) x ( n + 1) covariance matrix,     *     I        = (2.20) 
-n L-n Ji j 

Analogous to the continuous case, we may describe the M. E. M. extension of 

the measured covariance in terms of the innovation filter.    For 0  s n £ N, the inno- 

vation filter and its average output power are determined from the measured covariance 

by 2. 20.    For N + 1 £  <=, the covariance extension is chosen so that 

0,(0 
«N(i) 0  <;   i  £ N 

N + 1   £   i £ n 

;   N +1   £  n < 

17 



Applying this condition to 2.19 we see that the extension is determined by the recursive 

relation 

N 

VE(j)    =    Y*E("j)      =    -J      YE(j"i)   Tn(i) (2.21) 

1 "        j    =    N + l,   N + 2,  .  .  . 

It can be shown that the sequence obtained from 2.21 is square-summable and positive 
* 

definite when  *   is positive definite.     It follows that the discrete Fourier transform 

is well defined by the limit in the mean 

J/^AT V /,v       -j2rrkX 
d     ( X )   =   L.i.m.       y YE  ( k)   e 

E n->co       k = -n 

Since the convolutional filter ft    whitens the process x (.) in the steady state and 

its average output power is p  , we obtain 

d      (X )   |dQ      (X) |2      =      p (2.22) 
YE N 

where        d        ( X )    =    1 + ) r'    ( k ) e   " j 2 n k X 

k-i 

The M. E. M.  spectral estimate is then given by 

PE(f:Tm>    =4<>YE<*<>    
=   APN/   |d"N

(Af) AP
N/l

dn 
2 

Employing the sampled frequency vector defined in Part A, this may be written as 

T 2 
P(f:T)=AP/|F              12      I (2.23) 

E  k         m'                N'    ' £    N        -N ' v        ; 

* The sequence is said to be positive definite if *   is a positive definite matrix 
for n = 1, 2,  .  .  . 
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Consequently, the M. E. M. spectral estimate is obtained from the discrete 

measured covariance by determining the innovation filter and its average output power 

at time N from 2. 20.   In the next part we indicate that the M. L. M. spectral estimate 

may be obtained from the innovation filter and its average output power for times 

1   <.  n £ N, and demonstrate a relationship between the M. E. M. and M. L. M. 

C.       A Deterministic Relationship between the Data Adaptive Methods 

In the last part, we demonstrated that the innovation filter and its average 

output power at time 1   < n  <•   N is determined from the measured covariance by the 

vector equation. 
He 

*    n P 1   <;   n <.  N (2.24) 
-n      n —n 

Our first step here is to write the M. L. M.  spectral estimate in terms of the 

innovation filter. 

Let x ( i )   i    =    0, 1, 2, . . . , N be a zero-mean random process with 

covariance 

E   [x( i)x   ( j )]    =    Y( i-j ) 0  <.   i,   j  £   N 

and define the vector 

x       =    col(x(N),    x(N-l ),  . .  . ,   x(0)) 

If G      denotes the ( N + 1 )  x ( N + 1 ) matrix, 

°N 

*TN 

0 
- N-l 

0 0 2TN-2 
I                        1                        | 

1                        >                        1 
I                        1                        | 

1                        1                         | 

0 0 01 

(2.25) 
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then the innovation process of x (.) may be written in the vector form 

^N   = ^N^N 
(2.26) 

where 

Noting that 

£N   =  col (   (n),   E(n - 1), £(0)) 

&N   =   Ei>N^ N
*T] and   DN   .   E 

>T -, 

N-N      J £N£ 

where D    is the diagonal matrix 

JN 

°N 

we have from 2. 26 

2N    •    GN *N   G*N 
T 

It follows that the inverse measured covariance matrix is given by 

(2. 27) 

• 1 

-N -N     -N       -N GM
TD   '4G 

From 2. 9 we obtain the M. L. M.  spectral estimate 

(2.28) 

-1 T-l* T*T-1 * 
P        (f: NA)    =    F        tf F        =FGD GF 

L      U        ' -N-N N £N    -N       -N       -N      N 

i/po+ |n* F*|
2
/PI   + ifiTx,   FXT   I    /p       (2.29) N   -N N 
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By equation 2. 23 we may write 

PB(f:lA)    =   AP. / |aTF* | ' *    =   °' '• 2 N 

E 1 /    '     1 —1 

where  P^ (f: 0)    =     A Pn 

It then follows from 2. 29 that 

PL" 1 (f: NA)    =    A ^  P E" 1   (f: iA) (2. 30) 

i = 0 

That is, the reciprocal of the M. L. M. spectrum is obtained by averaging the recipro- 

cals of the M. E. M.  spectra obtained as the maximum lag of the measured covariance 
* 

varies from zero to N A .     This result is still subject to interpretation.   However, 

it does suggest that the M. L. M. spectral estimate has a lower resolution capability 

and is more stable then the M. E. M. estimate. 

Equation 2.30 suggests that a differential relationship exists between the 

continuous forms of the data adaptive estimates.   We now show that 

d P."1(f:T)    =    P^1   (f: T) (2.31) 
L E 

dT 

We employ 2. 3 and 2. 5 to write the M. L. M. spectral estimate as 

T T 

; f 
0J0 

PL-*   (f:T)    =(*/N0)[T-$$      e"J2TTft  H(t, u:T)   eJ2nfUdtdu]   (2.32) 

This result recently appeared in a paper by J. Burg,  Reference 4. 
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Where H (t, u: T) is the Fredholm resolvent of p (t - u) on   [ 0, T ], as determined 

by the integral equation 

T 
N     H(t, T: T)  +  V      H(t, u: T)  p(u-i)du    =    0 (t - T) ;   0 <; T, t <:   T       (2.33) 

J   Q 

Differentiating 2. 32, we obtain 

Nn dp"1  <f:T)    =    i-f     e"j2TTfT H(T, u:T)    j2rTfUdu 
dT     L J0 

-T     e"J2TTft    H(t, T:T)   e J 2 " £ Tdt 

-f   f      e_j2TTft      J>_     H(t, u:T)    ej2nfUdtdu (2.34) 
A) ^0 &  T 

To evaluate the derivative indicated in the last term of 2. 34, we use the resolvent 

identity  (see e.g.  R. Bellman,  Reference 5) 

H (t, u: T)    -    -H   (T, t: T)   H (T, u: T) 

It then follows easily from the conjugate symmetry of the Freedholm resolve and a 

change of variable that 2.34 may be written as 

-i- PL dT    L 

4(f:T)    -    I1 " ^     H(T, T- T:T)   e"j2nf dt |2    /NQ 

Since   H (T, T-T:T)    =    h (T: T)  (Compare 2.11 and 2. 33), 2. 31 follows from 2.12. 
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D.       Summary 

In this chapter we indicated the continuous and discrete forms of the data 

adaptive methods and provided an interpretation of the M. E. M. extension in terms 

of the innovation filter.   We have also shown that the discrete time M. L. M. spectrum 

may be obtained from the innovation filter and its average output power.    This result 

is gainfully employed in Chapter IV where we consider a scheme for implementing 

the two methods in which the innovation filter is estimated directly from the observed 

data. 

The continuous forms are employed in the next chapter to obtain an analytical 

comparison of the resolution capabilities of the two data adaptive methods and the 

conventional (Blackman - Tukey) method when the measured covariance consists of a 

pair of tones in white noise. 

III. A MEASURE OF RESOLUTION FOR THE DATA ADAPTIVE METHODS 

As indicated in the introduction, some measure of estimate performance may 

be obtained by applying the estimation methods to known covariance functions.   In 

this chapter we consider the case where the given covariance function is from a ran- 

dom process which consists of two pure tones in additive white noise.   Our objective 

in applying the estimation methods to this simple model is to provide a quantitative 

measure of resolution which may serve as a basis for comparison of the two data 

adaptive methods and the conventional method.   For simplicity, we consider the situ- 

ation where the tones have equal power so that the measured covariance is of the form. 

K(T)    =    N   6(T)  + a2   ej2nflT   + a*   ej2nf2T;     |T|   * T 
0 m 
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Pc(f:Tm)    =    D(f)*  [NQ  4- o    6(f-f1)  + a26(f-f2)n 

=    NQ   d(0)  + a2   D(f-f1)  + a2   D(f-y 

-    NQ[l   +9/Tm   (D(f-fl) + D(f-f2))] (31) 

From 3.1, we obtain 

Rc(6, W)    =   [l   + (6/Tm)(D(0)  +D(W/Tm))]/[l  + (2 6/Tm)   D (W/2 TJ ] 

The locus of points 6, W for which the tones are just separated is obtained by setting 

R    ( 6, W) equal to one.    This yields the equation 

D (0)   +  D (W/ T   )    =    2D (W/2T   ) (3.2) 
m m 

Equation 3. 2 determines a "cutoff" time-bandwidth product W   which depends on the 

lag window used.    For W  > W   the tones are separated and for W  <.   W   the tones 
c c 

are not separated.   We have illustrated this in Figure 3.1 by plotting   P'(W) as a ver- 

tical line centered at W .    The values of W   for two typical lag windows are shown in 
c c 

the same figure. 

Note that this result is apparent from the second term in 3.1 since the white 

noise level appears simply as an additive constant in the spectral estimate.    We shall 

obtain a quite differenct result for the data adaptive methods. 
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6'  (W) 

•> w 
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rectangular: 
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triangular 

\         m' 
.874 

Fig. 3.1 - 6' (W) for the Conventional Method. 
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B.        The M. E. M. 

We consider first the more general case where the measured covariance is 

2j2nf.T |T|   £   T 
; m K ( T )    -    NQ 6 ( T )  + X a.    eJ i 

i = 1 

The M. E. M. spectral estimate is obtained from 2.11 and 2.12.    For the above 

measured covariance, the former equation becomes 

T 

N     h(.T   )  + f    a.2ej2nfiT e"1   h(u:T   )   e^2""    u 
0 m /       I J m du 

i = 1 

=   ^      o2   ej2TTflT; 0  *   T  s   T (3.3) 
/ I m 

i = 1 

We let H (f: T   ) denote the Fourier transform of h (T : T   ).    Multiplying botli sides 
_.m m 

of 3. 3 by e and integrating, we obtain the equation 

H(f:T   )    =    V    9.     "l-H(f.:T   )    ] ej "(f i"f) Tm (3.4) m L      l   I i      m'    J / N sine [nil. - f) T 
i = l V      I m/ 

A        2 th 
Where 8.    =     a.    T   /N„   is the signal-to-noise ratio corresponding to the i     tone 

l l      m     0 

and the function sine ( X ) is defined by 

A     sin ( X) 
sine ( X )    =       £—'- 

We note that 3. 4 is a representation of H (f: T   ) in terms of its samples at the n 

tone frequencies.    To determine the samples, we evaluate 3.4 at f   =  f .   for 
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j    =    1, 2,  .  .  . , n.   This results in n linear equations for 

H(f: T   )  j    =    1, 2, .  . . , n: 
J      m 

H(f.:T   )    =   )   e.  l~l-H(f.:T   ) 1 e j n(f i"f j}  sine [n(f. -f .) T   ] (3.5) 
j      m L    i L I     m J L  v I     y    m v      ' 

j    =    1, 2,  .  .  . , n 

Therefore, the M. E. M. spectral estimate for the general n-tone case may be obtained 

from 3.5, 3.4, and 2.12. 

When n    =    2 and 6      =    9?    =    9 , 3.5 has the solution 

l-H(f1:Tm)    =   l-H   (f2:Tm)    = 

(l +6- Be " j n W sinc( TTW ))/((1 + 9)2 - 62 sine 2( rr W ))      (3.6) 

Equation 3. 4 becomes 

2 
H(f:Tm)    =    e^[l-H(f.:Tm)]e j  2TT(f.-f)  T 

i m [sinc(TT(f.-f)Tm)       (3.7) 

i = 1 

It follows from 2.12 that 

RE< e, w)   =   I i -H(V^:       )iyU-H(«t:Tm, 
o m        / 

(3.8) 

With some algebraic manipulation 3. 8 reduces to 
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RE(0. W)    =    [1+ 6 - 8 sinc(nW)]   /B (3.9) 

2 2 2 
where B    =    (1 + 6)     - 2(1 + 6) 6sinc (nW) cos (nW) + 6   sine    (TTW). 

Setting this term equal to one, we obtain a cubic equation for 8' (W) : 

4    3 3   2 
a     Pi    + 4a     Q   + 5a2-2(l-a)*    9 + 2a -2(1 - ex) S-   =    0 (3.10) 

A 
where        a    =     1 - sine (TTW), *   =    1 - cos (nW). 

This equation may be solved numerically by using, e.g., Newton' s method.    In Figure 

3. 2 we nave plotted the solution on a   dB    scale (20 log _ (.) ) for relatively small 

values of the time-bandwidth product.    For larger values of W the M. E. M. has the 

same resolution as the coventional method when the rectangular window is used in 

tiiat it separates the tones for any positive signal-to-noise ration if W >W     -   . 681. 

The plot indicates an important distinction between the conventional method 

and the M. E. M. .    For the former method the tones cannot be separated when 

W ^W   .   When the M. E. M.  is employed,  however, the tones may,  in principle be 

resolved for any non-zero time-bandwidth product if the signal-to-noise ration is 
* 

sufficiently large. 

We now show that similar results hold for the M. L. M. 

C".   '    The M. L. M. 

To obtain the M. L. M. spectral estimate for the general n-tone case, we 

employ 2. 4.    This yields the equation 

Bear in mind that this result is obtained by using a known co variance function. 
When real data is used to generate the estimate, the variance and bias of the estimate 
may preclude effective resolution of the tones when the time-bandwidth product is near 
zero. 
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Fig. 3.2 - e' (W) for The M. E. M. 
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m 

Q(X, t)   [N Q 6 (t - u) + y a. 

i = 1 

2    J2TT f . (t - u) 
Jdt 

=  N 0 

T 
v       V 2   r"1   r^i       s      "j2rr f.(t - u). *^(x, u) + \     a.     \      Q(x,t)   e iv        'dt 

i = l   l   '}o 

=    ^(x - u) 

Define the function 

(3.11) 

S(f,f)    =    [   [ 

T    T 
m    m 

A     r     r -j2rrfx j2nf  U  ,       , 
e Q (x, u) e d x du 

0    0 

We multiply both sides of 3.11 by e e and integrate: 

(3.12) 

S(f, f') + Ye. e"jTT(ti " f   ) Tm    sine 

i = 1 

n(f. - f '.) T 
l m S(f, f.) 

= ( T   /Nn)e 
-JTT(f"   f)     T 

m   s incLn(f-f)TmJ (3.13) 

This equation gives S(f, f') in terms of the samples, S(f, f.) i  = 1, 2, i. 

Evaluating 3. 13 at f = f.   j  = 1,  2,  .  .  . , n , we obtain n linear equations for the 

samples: 
n 

S(f, f.)   = ye   e"jn(fi " fj)Tm   sine [^(f. - f.) T 
i = 1 

m S(f, f.) 

=   (Tm/No) e'Mf ' ^ Tm      SmC [r (f • V   Tm] j   -   1,  2,  ....  n   (3. 14) 

We note from 2. 3 that the M. L. M.  spectral estimate is 

--1 
P. (t: T   )    -    JS (f, f) (3.15) 
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Consequently, 3.14 and 3.13 determine the estimate for the n-tone case. 

When n = 2 and 0=0=9, 3.14 has the solution for S(f, f ) 

S(f, t±)   = (Tm/N0) e"JTT (f " V   Tm { (9+ 1) sine [ir(f - fj Tj 

-9 sine (TTW sine [ n(f - t£ TJ }/{<© + ^ ' & sine2 (nW)} (3 16) 

S(f, f„) is obtained by interchanging f   and f~ in 3.16. 

Equation 3.13 then gives the reciprocal of the M. L. M.  estimate in terms of 

the samples: 

2 
S(f, f)   =  (Tm/N0) - 9 V   e"jn(fi " f) Tm    sine [ n(f. - f)   tm]s(f, f.) (3.17) 

m i = 1 

We note that 

RL (9, W)   =  S [<f4 +f2)/2, (f4 +f2)/2 ]/s(fr f2) (3.18) 

With some algebra 3.18 reduces to 

RL (9 , W)   = 1(9+ l)2 - 92 sine 2 (n W) - 2 9 sine2 (TT W/2) • 

[1+9(1 - sincdrW)) ]]•    /{l +0(1 - sine2 (TTW) )} (3.19) 

Setting R   ( 9 , W) equal to one, we obtain the solution for 9' (W) 

9'  (W)   =  {2 sine2 (TTW/2) - sine2 (rrW) - l\/ 

{ 1 - sine2 (TT W) - 2 sine2 (nW/2) f 1 - sine (TT W) ] } (3. 20) 
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9'(W) D.B 
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TN-75-7     (3.3) 

0.10 0.25 0.72 

Fig.  3.3 - The M.L.M. 
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This function is plotted in Figure 3. 3 over the same range of time-bandwidth product 

considered for the M. E. M.    For larger values of W the resolution of the M. L. M. 

is identical to that of the conventional triangular window in that the M. L. M. separates 

the tones for any positive signal-to-noise ratio if W > W   s> . 874. 

We note that the M. L. M. has the same general behavior as the M. E. M.  in 

that we can theoretically resolve tones which are arbitrarily close together if the 

signal to-noise-ratio is sufficiently large.   Comparing figures 3. 2 and 3. 3, we see 

that the M. E. M. requires less signal-to-noise ratio to separate the tones than the 

M. L. M.    The difference is about   20 dB    over the range of W considered. 

IV. IMPLEMENTATION OF THE DATA ADAPTIVE METHODS 

In Chapter II we indicated the mapping from the measured covariance, 

Y(i) i   = -N,  . .  . , 0 .  . . , N, to the innovation filter and its average output power: 

* 
*    n      =  P n  =  0, 1, . . . , N (4.1) —n —n       —n ' ' v      ' 

where 

1%,        =  Y(j - i) i, j  = 1 n + 1 
iJ 

P    =  col (p , 0 .  . . , 0) 
-n n 

It was shown that both the M. E. M. and M. L. M. spectra could be written 

in terms of ft , p     n   =  0, 1,  .  .  . , N: 
—n     n 

PE(f:Tm>   "   APN/^W <4'2> 

PL(f: V   = [>0+ I ^1T Zl    ''/Pi + " " ' + I ^"V iW1 <4-3> 
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In tMs chapter, we consider schemes for obtaining the spectra from the ob- 

served data segment, r(t) 0 s t £ T. We assume that r(t) is sampled uniformly at 

the M points, i A i = 0, 1, . . . , M - 1, where (M - 1) A = T, N <M and denote the 

samples by the vector 

r   -  col (rQ, r1, rM-l>' 

By 4.2 and 4.3, our problem becomes one of estimating the innovation filter 

and its average output power from the sampled data.   We put forth two general schemes 

lor this purpose (Parts B and C).    With the first (indirect scheme), we compute the 

measured covariance from the sampled data and solve 4.1 for 

I , p   n = 0,  1 N.    The second (direct scheme) constitutes a procedure for 
n      ii + 

estimating Q , p   n = 0, 1, . . , N directly from the sampled data.      This scheme 

is based on the fact that the innovation filter weights are chosen so as to minimize 

i he average output power (see Part B, Chapter II). 

Both schemes employ recursive relations for n   and p   which we now develop. 
-n n 

A.        Recursive Equations for the Innovation Filter 

We assume throughtout this part that the measured covariance is given and 

$    is positive definite.    As in Part B of Chapter II, we denote the innovation filter at 
— n 
time n by 

-  = r-i-i 
L. r   J -ii 

—n 

Where i    is the least-squares filter, 
-n 

To write 4.1 in terms of T  , we define the n-dimensional vector 
— n 

r Y(i) 
V(2) 

v(n)   J 
(4.4) 

We have worked out the details of a scheme suggested by Burg,  Reference S. 
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In this notation, 4 .1 becomes 
* * 

— n - 1 —n Y -n 
n   =   1, 2,  .  .  . , N (4.5) 

P   = pn + y     r 
n 0    —n    —n n   =  1, 2, , N (4.6) 

where pQ   =  y(0) 

ForY   =col(Y1, Y^ . . 

sional vector Y given by 

£=  col(Yn, Y         Y) 

, Y ), define the inversion of Y to be the n-dimen- 
n — 

(4.7) 

Employing this definition and 4. 5, we may write the equations for f in 

block form 
~ 

A 
<t> V 
—n - 1 — n 
A   * T 
—n : po 

B 
—n 

n + 1 

Where 

5„ " coi(rn + 1(i), ....  rn + 1(n)) 

A 
Y       J,   =   r        . (n + l) Yn + 1 n + 1 v ' 

Therefore, we have 

Y 
—n 

(n + 1) 

(4.8) 

—n - 1 —n — n    n + l 

Since $      , isa Toeplitz matrix, it follows readily from 4. 5 that 
— n- 1 

A * 
Y    = $      . r 

— n       — n - 1 — n 

(4.9) 

(4.10) 

Employing 4. 5 and 4.10 in 4.9, we obtain 

$      ,B       =* r      + $      t T    \.. 
—n-1—n —n-1—n        —n-1—n   n + l (4.11) 
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Since $      . is non-singular, 4.11 yields the result 

A    * 
B      - 
— n -n    -n     Yn + 1 

or 
A     * 

r   + r 
— n    —n Yn + 1 

- 

r                — 
-n + 1 YnJ L   A 

(4.12) 

(4.13) 

This equation is the desired recursive relation for the innovation filter.   It gives the 

least-squares filter at time n + 1 in terms of y and the least-squares filter at 

time n. 

We now develop a recursive relation for the average output power and indicate 

an algorithm for obtaining the innovation filter and its average output power from the 

measured covariance. 

From 4. 8 we also have the scalar equation 

A    * rr       * * * 

— n        —n 0     n + 1 

We employ 4.12 and 4. 6 in 4.14 to obtain the equation 

Y    .  .   =   -["$        T      +   Y(n + 1)       /p 
n + 1 L— n    —n J  /     n 

It follows from 4. 6 that 

T * 
Pn + 1   =  P0  + -n+1   In+1   = 

(4.14) 

(4.15) 

p     +f   T   B*    +   Y*    A      
Y(n + 1) 

0       —n     —n n + l 
(4.16) 
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By employing 4.12 and 4.15 in 4.16, we obtain a recursive relation for the 

average output power: 

Note that p   >0  n = 0, i, . . . , N, since $N is positive definite.   Consequently, 

4.17 implies that |y   I   =    |T (n) j   < 1     n  =  1, 2, . . . , N. 

Equations 4.13, 4.15 and 4.17 constitute an algorithm for mapping the mea- 

sured covariance into the innovation filter and its average output power: 

1) pQ   =  y(0)  nQ   =   [1] 

2) Given fi    and p , we compute v        . from 4.15,  Q       , and p       . are then obtain - 
-n *n F       Yn + 1 n + 1 Fn + 1 

ed from 4.13 and 4.17, respectively. 

B.   The Indirect Scheme 

To implement the indirect scheme, we obtain the measured covariance as 

M-l        , 
Y(1)   =  M L    rjrj-l i  = 0, 1, . . . , N;   N<M 

j = i 
The innovation filter and its average output power are then computed via the above 

algorithm. 

We note that the measured covariance is a triangular weighting of the unbiased 

covariance estimate. 

M-l 

K(i A)   =   -^- £     rr i   =  0, 1 N;   N<M 

j =i 

Otlier weighting is   possible, including the rectangular weighting 

(i. e.  f(i)   =  K (i A) ).   The triangular weighting, however, guarantees that the mea- 

sured covariance is non-negative definite (see, e.q.,Jenkins and Watts, Reference 10). 

This is obviously a necessary requirement for the data adaptive methods. 
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C.       The Direct Scheme 

A basic quantity in the recursive equations of Part A is y    =   r   (n), the 
n n 

response of the innovation filter at time n ^1 due to a discrete impulse applied at time 

zero.   Since stationary filters are typically represented by this response, we shall 

refer to the sequence, "I YJ» Yo» • • * » Yxj f as the stationary response of the innova- 

tion filter. 

In Part A we observed that when $    is positive definite, then the stationary 

response at time n satisfies the constraint 

V    |   < 1 n   -   1, 2,  .  .  . , N (4.18) i 

It is of interest that the converse of this statement also holds.    That is, when p   is a 

given positive number and -I y.,  y„,  .  .  . , y     Y 
N J is a given collection of complex num- 

bers which satisfy 4.18, then there exists a unique positive definite Toeplitz matrix, 

<£XT, which satisfies 4.1 where Q   , p       n   =  0,  1,  .  .  . , N are obtained from 
-N —n     n 

1    1'    2'  ' *    N J   via the recursive equations, 4.13 and 4.17.     We note from 

4.15 that the elements of this matrix   Y(j - i)   =      $M      , are given by the recursive 
ij 

equation 

Y(n + 1)   =   -[pnYn + 1+I^InJ n   =   0,  1 N-l 

where  Y(0)   =  p 

A f  A A AlrL.uA 

Consequently, any estimate, pn, i y , y„,  .  .  . , y     Y for which p» is posi- 

tive and 4.18 holds corresponds to a positive definite measured covariance.    There Is, 

of course, no need to acturally compute the measured covariance when the stationary 

response is obtained from the sampled data since we may determine the innovation 

filter and its average output power directly from 4.13 and 4.17. 

J. Burg suggested this result in Reference 8. We have resently demonstrated 
it in a paper which is to be published - "An Innovations Approach to Covariance Esten- 
sions. " 
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We now estimate the stationary response via a recursive scheme suggested by 

Burg.    To demonstrate the scheme, we let Q.      . be the innovation filter at time k + 1 
A -k + 1 

determined by I Yl, v2» .  .  . , vk» Yk + i j where | Yl» Y2»  • •  • » vk j is the esti- rk'   rk 
mated stationary response up to time k and y 

we take fi     = col (1, y) ). 
k + 1 

'2'  '  "  •  '   Yk 

is a complex parameter (for k 0, 

Our first step is to estimate the average output power of fi 
K T*  1 

denote the k + 2 data points 

R.   =   col (r., r.    ..... 
-J J     J-l 
and consider the power estimate 

M-l 

rj-(k + l));   k + lsj£M-l 

Fk + i "  V 
i/2(M-k-i))£      {iQ^Rjl'+ln^Rjl2} 

j = k + 1 

We let R 
"J 

(4. 19) 

The first term under the summation sign is obtained by convolving fi with the for- 

ward data sequence -j r , r., .*} "•"*** -^-—   L 0» T '   M-1J  
covolution of fi with the reverse data sequence -j r 

and the second term results from the 

M-l'    M-2' 
r   1 ro/' 

m 

It is reasonable to take the estimate, v.     ., to be the value to Yi    A which Yk + 1 k + 1 
inimizes P,     ..    To determine v.     ., we use 4.13 to partition fi : 

k + 1 Yk + 1 -k + 1 

1 

R . is partitioned as 

— k + 1 A+^kYk + l 

fk+l 

R.   = 
-J 

where X . and Z . are scalars. 
J J 

X 

Y. 
-J 
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With this notation, we may rewrite 4.19 in terms of y       : 

2(M-K-1)P,    .   =)       (|x.+r.    y. + r.    Yi., A + Y, .A z. I k + 1       Z        I '   j    -k   ^-j    -k     k+1      k + 1   j ' 
j -k + 1 

+   Yt.4x. + r.    y.+ r.   y. Yu.4 + z-    r (4-2°) k + 1    j    -k    *-j     -k   *-j   Tk + 1       j '   J 

It is easily verified with elementary calculus that the value of y        which minimizes 

this expression is given by 

J  = K + 1 

f1" 1 r   * T   * 2 T      2 i 

j =k+l 
(4.21) 

This may be written in the form 

M-l 

\+i - -2l z^>Yk<J>/ I {lzk<»l + |Yk(j) i 1 <4-22) 

j = k + 1 '   j = k + 1 

Where 

A T A A *T 
zk(j) = xj + rk Zji   Yk(j) =  Zj+rk    y_. 

Observe that Z    (j) is the output at time j when fi .is convolved with the data sequence 

Zk(j)   =   r.+ )rk(t)r..^ (4.23) 

1 = 1 A* 
and Y,  (j) is the output at time j - 1 when Q    is convolved with the data sequence: 

K K 

k       „ 
Yk^ = V(k+D + I rk(^ rj-(k+D+t <4-24> 

-t = l 
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From 4. 22 we obtain the bound 

1 1-1 
A 

'kn 
j =k + l j = k+l 

*2£     |Zk(j)|     | Yk(j) |  /   )'{ |Zk(j) |2+   |Yk(j) |2} (4.25) 

Since 

M-l 
2 

0a 1   (izk<j)i - iYk<J>0 

I     {|ZkU)l    +   |Yk(j)|    }-2^       |zk(J)|     |Yt(i)| 
j =k+l j =k + l 

it follows from 4. 25 that 

Yk + 1 

Consequently, y is a valid estimate of the stationary response at time k + 1. 

Since r,  is obtained by applying 4.13 to the estimate ( y , y ,  .  .  . , y.) for 

k > 1, equation 4. 22 constitutes a recursive scheme for estimating the stationary re- 

sponse of the innovation filter.    From 4. 21, the starting value for the scheme is 

-1        , ,M-1 

j =1 '   j -1 

It is apparent that, if we implement 4. 22 by actually computing the convolution 

of Q , with the data sequence, then the number of complex multiply and add operations 
•" .K. 

is prohibitive for large k.    Fortunately, this procedure is not necessary as we now 

indicate. 
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By 4. 23 and 4. 24, we may write 

k + 1 

z
k+i«> -*,+ I r

k+i
(t)rj-t"ak+i*j Y

k+i(J> 
1=1 

k + 1 
r1 *T 

Yk + 1 (j)    ;   rj-(k + 2)   + I    rj-(k + 2) + i   =  "k + 1   -j-1 
1= 1 

Employing 4.13 and the partition of R . defined previously, we have 

T T A *T 
a.   , R. = x. + r.   y.+ r.     y. Y,   ,+Z. Y,   ,.  = Z, (J) + Y,   ,. Y, (j) -k + 1 -j j     -k    -j      -k     *-j    k + 1        j   Yk + 1 k  J       Yk + 1     k  J 

and 

A*X * T * A *T 
Q.     R.    .   = x.    . v,    ,, + r.    y.    . Y ,    „ + r,      y.    . + z.    . 

k    -j -1 j-1    k + 1     -k   ^j -1    k + 1     -k        j-1        j-1 

• »k+l »kU-i) + YkU-D 

Therefore, we have the recursive equations 

Zk + l(j)   =    Zk(j)+ Yk + 1 Yk(j);      k + ^J^M"1 (4.27a) 

Yk + l(j)   "  vk + l   Zk(j_1)  +Yk(j"1);      k + 2sj^M-l (4.27b) 

It follows from 4. 26 that,  if we intialize 4. 27 by defining 

ZQ(j)   =  rj       ;       lsjs  M-l 

YQ(j)   =   r .      ;        lsjs  M-l 

then equations 4.13, 4. 22 and 4. 27 constitute an algorithm for mapping the data se- 

quence into the stationary response and the innovation filter. 
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To complete our description of the direct scheme, we need only indicate how 

the average output power of the innovation filter is estimated. 

M -1 
The logical choice for p     =  1/M  )      |r. | (4.28) 

j=0      J 

The remainder of the output power sequence is obtained via 4.17 

K+i pk^- i^k+i i2>   :   k-0'1 N-' 

D.       Summary 

In this chapter we developed two basic schemes for estimating the innovation 

filter and its average output power.   With the first (indirect scheme) we solve the 

system of equations, 4.1, where the measured covariance is taken to be a weighted 

average of the sampled data.    An algorithm for solving this system of equations is 

indicated in Part A.   With the second (direct scheme) we estimate the stationary 

response of the innovation filter, y     =   T   (n), n =   1, 2,  .  .  . , N, directly from the 

sampled data and determine the innovation filter via equation 4.13.   The average out- 

put is then computed from equation 4.18 where p   (the covariance for zero lag) is es- 

timated by averaging the sampled data. 

Variations of these two schemes may be obtained by simply weighting (window- 

ing) the respective estimates.    This corresponds to weighting the measured covari- 

ance when the indirect scheme is used and weighting the estimated stationary response 

when the direct scheme is used.   We note that the estimated stationary response may 

be weighted in two different ways: 

1) Standard Weighting:    y     = w (k) v. where \ y , Y2>  •  •  • » YN f is computed via 

the direct scheme. 

2) Iterative Weighting:    y     =  w (k) y    where y   is computed at each iteration by 
K K K 
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using the weighted stationary response, i y.t y„, . . . , y,        1-, to determine 

r,     . in equation 4. 21. 
—k -1 

Either way yields another valid estimate of the stationary response when 

w (k) j  s  1   ,     k   =  1, 2,  .  .  . , N. 

In the next chapter we consider six spectral estimates obtained by employing 

the indirect scheme, the direct scheme and a weighted version of the direct scheme 

with each of the data adaptive methods.    A qualitative evaluation of the relative per- 

formance is conducted by applying each of the estimates to data acquired by simulating 

a pair of tones in white noise. 

V. APPLICATION OF THE SPECTRAL ESTIMATES TO A SIMULATED RANDOM 
PROCESS 

in the previous chapter we developed the indirect and the direct  schemes for 

estimating the innovation filter and its average output power.    It was indicated that 

variations in the latter scheme could be obtained by weighting the estimated stationary 

response of the innovation filter. 

We consider here the six spectral estimates determined by employing eacli of 

the following schemes with the M. L. M. and the M. E. M. 

1) Indirect 

2) Direct 

3) Direct-Hanning:   This scheme uses an iterative weighting of the estimated station- 

ary response (see Part D,  Chapter IV) 

The weighting is the Hanning window: 

w (k)   =   1/2 [ 1 + cos (n k/M) ]        k   =   1,  2,  .  .  . , N 

where M is the number of data samples and N is the largest time for which the innova- 
* 

tion filter is estimated. 

* We have chosen w (k) somewhat arbirarily to determine the estimate behavior 
vvhen a typical iterative weighting is used. 
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The spectral estimates are applied to data acquired by numerically simulating 

two unit power tones in Gaussian white noise.   Our model for the sampled data is the 

following: 

j2rrf , nA        j2nf „nA , „ 
r=eJ        1       + e 2       + V 

n n 

V     =VR + JVI; n  = 0, 1, 2, . .  . , M-l 
n n       J     n '    *    ' 

(R I \ 
V    , V      )  n  = 0. 1. .... M-l, are inde- 

n        n  / 
pendent zero-mean Gaussian with variance N_/ 2 A where N   is the white noise level. 

The parameters, (M, A, f , f~), are fixed at the values 

M  =  500, A  =  .01 sec., f .   =  10 H ., f „   =  10.5H . 
1 z        2 z 

In Figures 5.1 - 5. 48 we have plotted the six estimates on a dB scale 

(10 log      (.) ) for a fixed data sequence and for various values of the parameters, 

8'    =   MA/Nnandp   =   N/M.   Figure 5. 0 is the index to these plots.   The plots of 

the spectral estimates obtained with the Direct-Hanning scheme are not included for 

p < . 4 since these are nearly identical with the corresponding Direct scheme plots. 

The spectral plots enable us to provide a qualitative comparison of the esti- 

mate performances.   The primary measures of performance are the estimate stability 

as evidenced by the relative "smoothness" of the estimated noise spectrum (ideally 

the noise spectrum is flat) and the estimate resolution or ability to adequately depict 

the presence of the two tones. 

We observe that the spectral plots support the results of Chapter III in that 

the estimate resolution improves with increasing signal-to-noise ratio, 0  =  p 6'. 

Note, however, that the estimate stability decreases with increasing p since the num- 

ber of data samples is fixed.   This is most apparent with the M. E. M. - Direct esti- 

mate which is highly unstable for p  =   . 5 (seeFigs.  5. 22 and 5. 46). 
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We have drawn the following preliminary conclusions concerning the relative 

behavior of the six estimates: 

1) The Direct and Direct-Hanning Schemes give generally improved performance 

over the Indirect Scheme for both data adaptive methods.    The plots indicate that these 

schemes yield higher resolution than the Indirect Scheme (see eq. Figs.  5.3 - 5.4 and 

Figs.  5.15 - 5.16).    The stability of the three schemes is roughly the same except for 

the case where the M. E. M. is used and p >0. 3.  In this case the Indirect and Direct- 

Hanning schemes have comparable stability (see Figs. 5. 21 and 5. 24). 

2) The M. L. M.  - Direct and M. L. M.  Direct-Hanning estimates do not differ signifi- 

cantly. 

3) For p   > .3 the M. E. M.  - Direct-Hanning estimate performs better than the 

M. E. M.  - Direct estimate.    This results from the instability of the M. E. M.  - Direct 

estimate for p >  .3 which is apparently reduced significantly by weighting the esti- 

mated stationary response (compare Hgs.  5. 22 and 5. 24 andFigs.  5. 46 and 5. 48). 

Note that the M. E. M.  - Direct estimate is relatively stable for .2   s p   ^   .3 and the 

resolution is not appreciably less than that obtained for p > .3. 

4) The performance of the M. E. M.  - Direct for .2  <.   p < .3 is comparable to the per- 

formance of the M. L. M.  - Direct for . 4  £   p   £ . 5(Compare eq. Figs.  5.10 and 5.16). 

The above conclusions and the additional consideration of computational speed 

suggest that a reasonable spectral estimation procedure is to employ the M. E. M.  - 

Direct (or the M. E. M.  - Direct-Hanning) estimate for . 2 ^ p <. 3.   We emphasize, 

however, that these are preliminary conclusions and additional testing is clearly re- 

quired.   In particular, other weightings of the stationary response should be considered 

and the estimates should be applied to a wider range of simulated spectra. 
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TN-75-7   (5.0) 

Parameters - 6'    =  MA/N     =  5/N , p  = =  N/M   =  N/500 

6* -  500 

M. L. M.  - Indirect, Direct 

figs. 5.1 - 5.10 

M. L. M. - Direct-Hanning 

p  =   .4,  .5 figs.  5.11 - 5.12 

M. E. M.  - Indirect, Direct 

P  =  .1, .2, .3, .4, .5 figs. 5.13 - 5.22 

9' 

M. E. M.  - Direct-Hanning 

p  =   .4, .5 figs. 5.23 - 5.24 

=   50 

M. L. M.  - Indirect, Direct 

figs.  5. 25 - 5. 34 

M. L. M.  - Direct-Hanning 

p   =   .4,  .5 figs. 5.35 - 5.36 

M.E. M.  -Indirect, Direct 

p  =   .1, .2,  .3, .4,  .5 figs.  5.37 - 5.46 

M. E. M.  - Direct-Hanning 

p  =  .4,  .5 figs.  5.47 -5.48 

Fig.  5. 0 -     Index to the Spectral Plots. 
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Fig.  5. 1 - Indirect,   p= . 1. 
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TN-75-7   (5.2) 
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Fig. 5.2 - Direct, p =   . 1. 
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TN-75-7     (5.3) 
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CH 
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50 

^»*^~— 

6.00 7.00 9.00 11 . 00 13.00 1S.0' 
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Fig.  5. 3 - Indirect,   p =   . 2. 
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TN-75-7   (5.U) 
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TO 
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Fig. 5.4 - Direct, p =  . 2. 
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lTN-75-7 (5-5) 
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40. 

60. 

-      80 
5.00 7 . 00 9.00 11 .00 1 3   00 15   0i 

fHz •* 

Fig. 5. 5 - Indirect,  p  =   . 3. 
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Fig.  5. 6 - Direct,  p  =   . 3. 
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Fig. 5.7- Indirect,  p   =   .4. 
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TN-75-7  (5.8) 

5.00 

Fig. 5. 8 - Direct,  p  =   .4. 

55 



TN-75-7   (5.9) 

3 >—- 
C 

-I 
CL, 

30. 

40. 

60. 

HO. 

y 

V^ VV ̂ V ^"\ U^ 

5.00 7.00 9. 00 1100 

Fig. 5. 9 - Indirect,  p =   . 5. 
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Fig. 5.10 - Direct,  p  =   . 5. 
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TN-75-7   (5.11) 
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Fig. 5.11 - Direct-Harming,  p  =   .4. 
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TN-75-7   (5.12) 
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Fig. 5.12 - Direct- Harming,  p  =   . 5. 
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TN-75-7   (5.13; 
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Fig.  5.13 - Indirect,   p  =   . 1. 
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TN •75-7   (5.14)] 
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Fig. 5.14 - Direct,  p =  . 1. 
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TN-75-7   (5.151 
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Fig.  5. 15 - Indirect,   p   =   . 2. 
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TN-75-7   (5.16) 
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Fig. 5.16 - Direct, p  =   .2. 

63 



TN-75-7   (5.17) 
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Fig. 5.17 - Indirect,  p  =   . 3. 
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TN-75-7   (5.18) 

5.00 7.00 

Fig. 5.18 - Direct,  p =   . 3. 
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Fig.  5.19- Indirect,  p  =   .4. 
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TN-75-7   (5.20) 

5.00 

Fig. 5.20 - Direct,  p  =   .4. 
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[TN N-75-7   (5.21) 

10. 

ft . 00 

Fig. 5.21 - Indirect,  p   =   . 5. 
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TN-75-7   (5.22) 

10. 

Fig. 5.22 - Direct,  p =   . 5. 
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TN-75-7   (5.23) 

5.00 7.00 9.00 1 . 00 13   00 15. or 
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Fig. 5.23- Direct-Hanning,  p  =   .4. 
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TN-75-7   (5.24) 
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Fig.  5.24 - Direct-Harming,   p   =   . 5. 
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Fig. 5. 25 - Indirect,  p =   . 1. 
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TN-75-7   (5.26) 
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Fig. 5.26 - Direct,  p  =   . 1. 
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Fig. 5. 27 - Indirect,  p =   .2. 
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Fig. 5.28 - Direct,  p =   . 2. 
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Fig. 5.29 - Indirect,  p  =   . 3. 
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TN-75-7   (5.30) 
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Fig. 5.30 - Direct, p  =  . 3. 
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TN-75-7   (5.31) 
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Fig. 5.31 - Indirect,  p =   .4. 
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Fig. 5.32 - Direct,  p  =   .4. 
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Fig. 5. 33 - Indirect,  p =   . 5. 
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Fig. 5.34 - Direct,  p =  . 5. 
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TN-75-7   (5.35) 
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Fig. 5.35 - Direct-Harming,  p  =   .4. 
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TN-75-7   (5.36) 

40. 

-     60. 

-     80. 
5.00 7.00 9.00 11.00 13.00 15   0 

Fig. 5.36 - Direct-Hanning,  p =   . 5. 
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Fig. 5. 37 - Indirect,  p =   . 1. 
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Fig. 5. 39 - Indirect,  p  =   .2. 
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Fig. 5.40 - Direct,  p  =   . 2. 
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Fig. 5.41 - Indirect,  p  =   . 3. 
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Fig. 5.42 - Direct,  p =   . 3. 
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Fig. 5.43 - Indirect,  p  =   .4. 
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Fig. 5.44 - Direct,  p =   .4. 
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